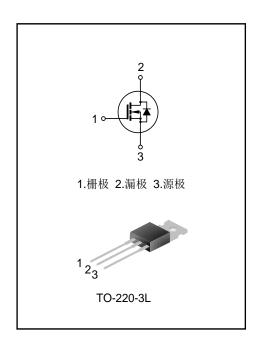


100A、150V N沟道增强型场效应管

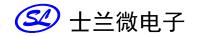

描述

SVGP157R5NT N 沟道增强型功率 MOS 场效应晶体管采用士兰的 LVMOS 工艺技术制造。先进的工艺及元胞结构使得该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。

该产品可广泛应用于不间断电源及逆变器系统电源管理。

特点

- 100A, 150V, R_{DS(on)} (典型值) =6.2mΩ@V_{GS}=10V
- ◆ 低栅极电荷量
- ◆ 低反向传输电容
- 开关速度快
- ◆ 提升了 dv/dt 能力
- ◆ 100%雪崩测试
- ◆ 无铅管脚镀层
- ◆ 符合 RoHS 环保标准

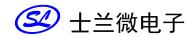


关键特性参数

参数	参数值	単□
V _{DS}	150	V
V _{GS(th)}	2.0~4.0	V
R _{DS(on)} , max	7.5	mΩ
I _D	100	A
Q _{g.typ}	74	nC

产品规格分类

产品名称	封装形式	打印名称	环保等级	包装方式
SVGP157R5NT	TO-220-3L	P157R5NT	无卤	料管



极限参数(除非特殊说明, T_J=25°C)

参数		<i>ሱ</i> ሉ 🗆	符号 测试条件	参数值			光 / ÷
		1寸写		最小值	典型值	最大值	单位
漏源电压		V_{DS}		150			V
栅源电压		V_{GS}		-20		20	V
泥松山沟		1	T _C =25°C			100	Α
漏极电流		I _D	T _C =100°C			63	А
漏极脉冲电流	(注1)	I _{DM}	T _C =25°C			400	А
耗散功率	(注2)	P _D	T _C =25°C			260	W
单脉冲雪崩能量		E _{AS}	L=0.5mH,V _{DD} =100V,R _G =25Ω, 开始温度T _J =25°C			825	mJ
单脉冲雪崩电流		I _{AS}				57.4	Α
工作结温范围		TJ	1	-55		150	°C
贮存温度范围		T _{stg}		-55		150	°C

热特性

参数	符号	测试条件	参数值			单位
多奴	10 5	测风景厅	最小值	典型值	最大值	丰世
芯片对表面热阻,底部	R ₀ JC				0.48	°C/W
芯片对环境的热阻	$R_{\theta JA}$				62.5	°C/W
焊接温度 (直插式)	T_{sold}	15 ⁺² ₋₀ sec, 1time	-	-	260	ô

电气参数(除非特殊说明, T」=25°C)

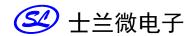
静态参数

参数	符号	测试条件 参数值 最小值 典型值 最大值		単位		
	1975		最小值	典型值	最大值	丰位
漏源击穿电压	BV _{DSS}	V _{GS} =0V, I _D =250μA	150			V
漏源漏电流	1	V _{DS} =150V, V _{GS} =0V, T _J =25°C			1.0	^
<i>油泥</i> 湖电流	I _{DSS}	V _{DS} =150V, V _{GS} =0V, T _J =125°C	1	10		μA
栅源漏电流	I _{GSS}	$V_{GS}=\pm 20V$, $V_{DS}=0V$	1	1	±100	nA
栅极开启电压	$V_{GS(th)}$	$V_{GS}=V_{DS}$, $I_{D}=250\mu A$	2.0	1	4.0	V
导通电阻	D	V _{GS} =10V, I _D =100A	1	6.2	7.5	mΩ
	R _{DS(on)}	$V_{GS}=8V$, $I_D=50A$	1	6.4	7.7	mΩ
栅极电阻	R_{G}	f=1MHz		4.6		Ω

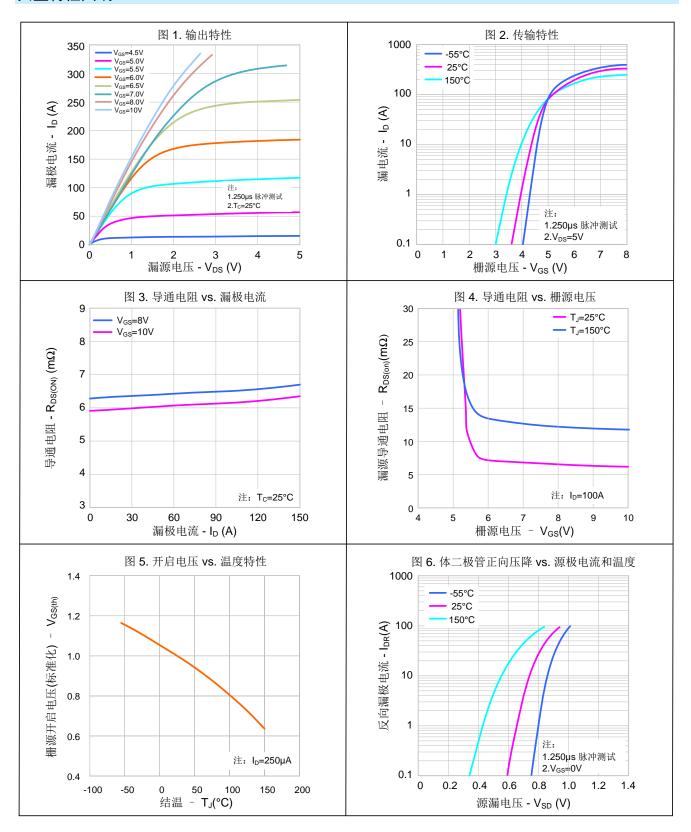
动态参数

参数	符号	测试条件	参数值			单位
少奴	10.2	测风泉什	最小值	典型值	最大值	半世
输入电容	C _{iss}			5223		
输出电容	Coss	f=1MHz,V _{GS} =0V,V _{DS} =75V		689		pF
反向传输电容	C _{rss}			14		
开启延迟时间	t _{d(on)}			23		
开启上升时间	t _r	V_{DD} =75V, V_{GS} =10V, R_{G} =1.6 Ω ,		48		20
关断延迟时间	t _{d(off)}	I _D =50A (注 3, 4)		61		ns
关断下降时间	t _f	(在3,4)		22		
栅极电荷量	Q_g			74		
栅极-源极电荷量	Q_gs	V _{DD} =75V, V _{GS} =10V, I _D =100A		34		nC
栅极-漏极电荷量	Q_gd	(注 3,4)		13		
栅极-平台电压	V _{plateau}			6.5		V

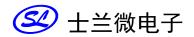
反向二极管特性参数

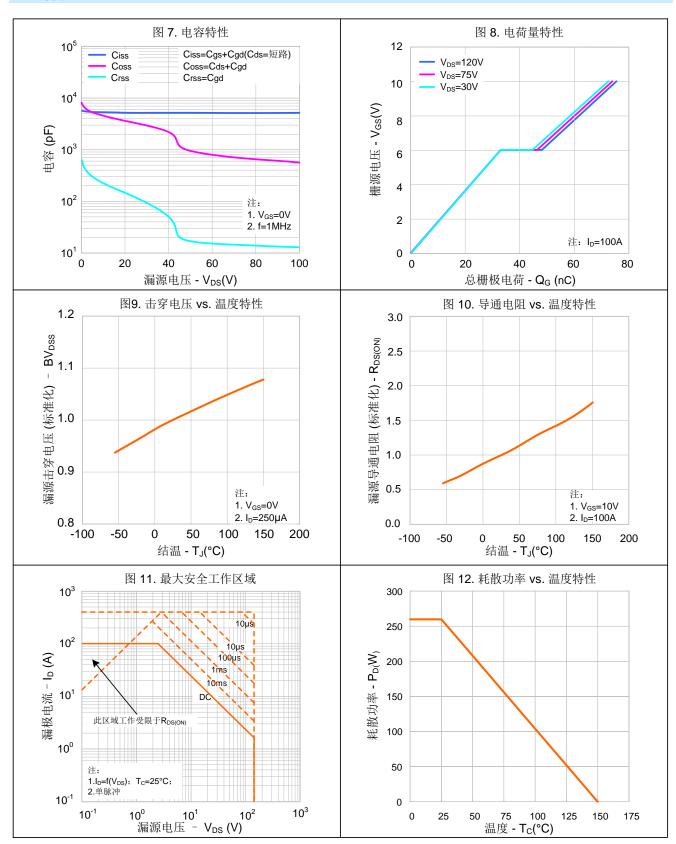

₹ ₩,	符号	测试条件	参数值			光 / ÷
参数	1寸 写	测风家什	最小值	典型值	最大值	单位
连续二极管正向电流	Is	T _C =25°C, MOS 管中源极、漏极构成			100	А
二极管脉冲电流	I _S , pulse	的反偏 P-N 结			400	A
源-漏二极管压降	V_{SD}	I _S =100A, V _{GS} =0V			1.4	V
反向恢复时间	T _{rr}	I _S =100A, V _{GS} =0V,		119		ns
反向恢复电荷	Q _{rr}	dl _F /dt=100A/µs (注3)		421		nC

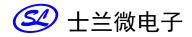
注:

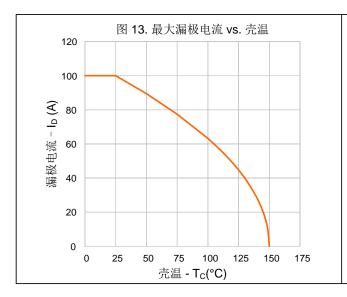

- 1. 脉冲时间5µs;
- 2. 耗散功率值会随着温度变化而变化,当大于25°C时耗散功率值随着温度每上升1度减少2.1W/°C;
- 3. 脉冲测试:脉冲宽度≤300μs,占空比≤2%;
- 4. 基本上不受工作温度的影响。

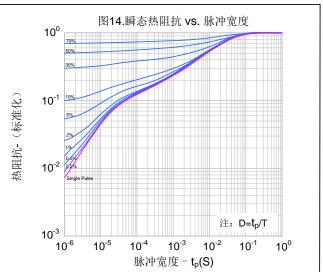
杭州士兰微电子股份有限公司


版本号: 1.2 共 9 页 第 3 页

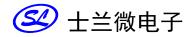

典型特性曲线


版本号: 1.2 共 9 页 第 4 页

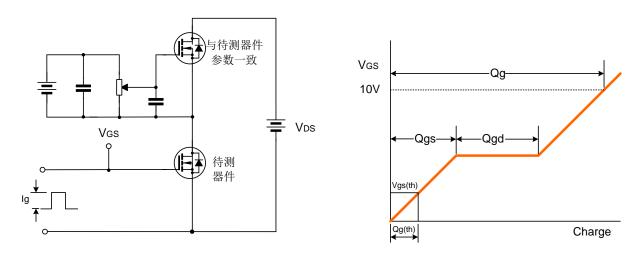

典型特性曲线 (续)



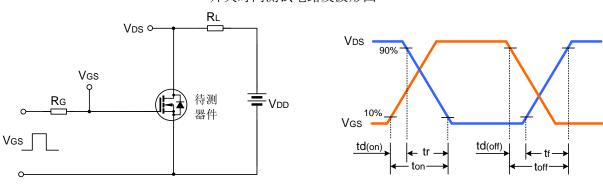
版本号: 1.2 共 9 页 第 5 页



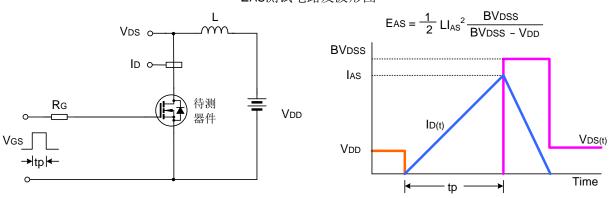
典型特性曲线(续)

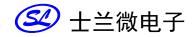


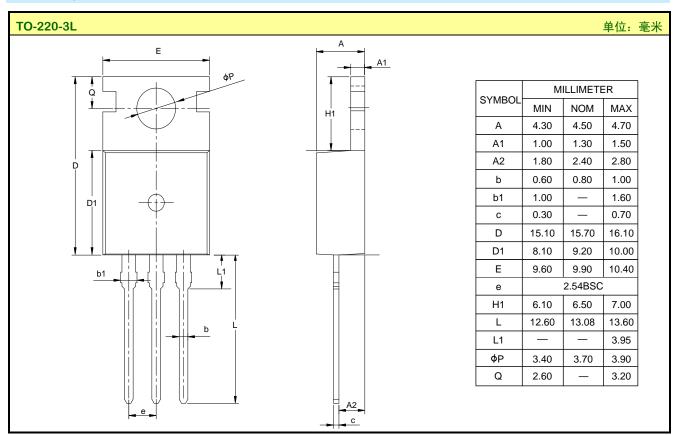
版本号: 1.2 共 9 页 第 6 页



典型测试电路

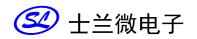

栅极电荷量测试电路及波形图


开关时间测试电路及波形图


EAS测试电路及波形图

版本号: 1.2 共 9 页 第 7 页

封装外形图



重要注意事项:

- 1. 士兰保留说明书的更改权, 恕不另行通知。
- 2. 客户在下单前应获取我司最新版本资料,并验证相关信息是否最新和完整。产品应用前请仔细阅读说明书,包括其中的电路操作注意事项。
- 3. 我司产品属于消费类电子产品或其他民用类电子产品。
- 4. 在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并 采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- 5. 购买产品时请认清我司商标,如有疑问请与本公司联系。
- 6. 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!
- 7. 我司网站 http://www.silan.com.cn

版本号: 1.2

http://www.silan.com.cn

SVGP157R5NT 说明书

产品名称: SVGP157R5NT 文档类型: 说明书

版 权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn

版 本: 1.2

修改记录:

- 1. 添加曲线图 4、图 5、图 12、图 13、图 14
- 2. 更新 **SOA** 曲线
- 3. 更新重要注意事项

版 本: 1.1

修改记录:

- 1. 更新电气图和典型电路图;
- 2. 更新重要注意事项;
- 3. 更新标准化后的封装外形图

版 本: 1.0

修改记录:

1. 正式版本发布

杭州士兰微电子股份有限公司 http://www.silan.com.cn